Obligation |
: |
Must |
Prerequisite courses |
: |
- |
Concurrent courses |
: |
ELE226 |
Delivery modes |
: |
Face-To-Face |
Learning and teaching strategies |
: |
Question and Answer Programming Assignments, Homework, Other: This course must be taken together with 'ELE226 Circuit Theory II' course. |
Course objective |
: |
This course provides a platform to improve programming skills and understanding the basis of Circuit Theory II course content under several programming applications using preferred professional programming language. Topics include three-phase circuits, Laplace transform, impulse response, convolution results and passive filter implementations. |
Learning outcomes |
: |
A student who completes the course successfully 1. Learns the programming environment 2. Improves programming skills 3. Models a system in a programming platform 4. Uses relevant codes towards the solutions 5. Interprets the results in comparison with the solutions provided by ELE226 course materials |
Course content |
: |
Tools of the software environment. Balanced Three-Phase Circuits in the software environment. Laplace Transform in Circuit Analysis in the software environment. Inverse Laplace Transform in the software environment. Constructing Transfer Functions: Pole Zero Plots in the software environment. Use Impulse Response for System Analysis in the software environment. Solving Convolution Integral in Circuit Analysis in the software environment. Programming Assisted Passive Filter Design in the software environment. |
References |
: |
John O. Attia, Electronics and Circuit Analysis using MATLAB, 2nd Ed., CRC Press, 2004. S. T. Karris, S. Karris, Circuit Analysis II with MATLAB® Applications, Orchard Publications, 2004. |
Course Outline Weekly
Weeks |
Topics |
1 |
Introduction to Scientific Programming |
2 |
Software Platform Tools |
3 |
Preliminary work for Experiment 1- Assignment 1 for Balanced Three-Phase Circuits |
4 |
Experiment 1 (in Laboratory) |
5 |
Preliminary work for Experiment 2- Assignment 2 for Laplace Transform and Inverse Laplace Transform |
6 |
Experiment 2 (in Laboratory) |
7 |
Preliminary work for Experiment 3- Assignment 3 for using Transfer Functions |
8 |
Experiment 3 (in Laboratory) |
9 |
Preliminary work for Experiment 4- Assignment 4 for Impulse Response |
10 |
Experiment 4 (in Laboratory) |
11 |
Preliminary work for Experiment 5- Assignment 5 for Convolution Integrals |
12 |
Experiment 5 (in Laboratory) |
13 |
Preliminary work for Experiment 6- Assignment 6 for Passive Filter Design |
14 |
Experiment 6 (in Laboratory) |
15 |
Preparation for final exam |
16 |
Final exam |
Matrix Of The Course Learning Outcomes Versus Program Outcomes
Key learning outcomes |
Contribution level |
1 |
2 |
3 |
4 |
5 |
1. |
Possesses the theoretical and practical knowledge required in Electrical and Electronics Engineering discipline. | | | | | |
2. |
Utilizes his/her theoretical and practical knowledge in the fields of mathematics, science and electrical and electronics engineering towards finding engineering solutions. | | | | | |
3. |
Determines and defines a problem in electrical and electronics engineering, then models and solves it by applying the appropriate analytical or numerical methods. | | | | | |
4. |
Designs a system under realistic constraints using modern methods and tools. | | | | | |
5. |
Designs and performs an experiment, analyzes and interprets the results. | | | | | |
6. |
Possesses the necessary qualifications to carry out interdisciplinary work either individually or as a team member. | | | | | |
7. |
Accesses information, performs literature search, uses databases and other knowledge sources, follows developments in science and technology. | | | | | |
8. |
Performs project planning and time management, plans his/her career development. | | | | | |
9. |
Possesses an advanced level of expertise in computer hardware and software, is proficient in using information and communication technologies. | | | | | |
10. |
Is competent in oral or written communication; has advanced command of English. | | | | | |
11. |
Has an awareness of his/her professional, ethical and social responsibilities. | | | | | |
12. |
Has an awareness of the universal impacts and social consequences of engineering solutions and applications; is well-informed about modern-day problems. | | | | | |
13. |
Is innovative and inquisitive; has a high level of professional self-esteem. | | | | | |