Obligation |
: |
Elective |
Prerequisite courses |
: |
- |
Concurrent courses |
: |
ELE407 |
Delivery modes |
: |
Face-to-Face |
Learning and teaching strategies |
: |
Lecture, Question and Answer, Experiment, Other: This course must be taken together with ELE407 DIGITAL SIGNAL PROCESSING. |
Course objective |
: |
Successful students are expected to know application of time domain and frequency domain signal processing methods in Matlab, Labview or similar environment. |
Learning outcomes |
: |
A student completing the course successfully will Recognize basic signal processing problems, Model encountered problems, Know which algorithms can be used to solve the problem, know the advantages and disadvantages of these algorithms, and implement them by writing programs, Apply the techniques and algorithms learnt in the class to problems encountered in projects , Have adequate knowledge to follow and understand other signal processing algorithms. |
Course content |
: |
Sampling, decimation and interpolation. Reconstruction and effects of aliasing. Design and implementation of digital filters. Quantization and effects of quantization on Digital systems. Windowing functions and their properties. Implementation and investigation of discrete Fourier transform and Fast Fourier transform algorithms. Experiments using speech and image signals. |
References |
: |
1. Oppenheim , A.V. and R.W. Schafer, Discrete-time Signal Processing, .Pearson, 2010.; 2. Lecture Notes. |
Matrix Of The Course Learning Outcomes Versus Program Outcomes
Key learning outcomes |
Contribution level |
1 |
2 |
3 |
4 |
5 |
1. |
Possesses the theoretical and practical knowledge required in Electrical and Electronics Engineering discipline. | | | | | |
2. |
Utilizes his/her theoretical and practical knowledge in the fields of mathematics, science and electrical and electronics engineering towards finding engineering solutions. | | | | | |
3. |
Determines and defines a problem in electrical and electronics engineering, then models and solves it by applying the appropriate analytical or numerical methods. | | | | | |
4. |
Designs a system under realistic constraints using modern methods and tools. | | | | | |
5. |
Designs and performs an experiment, analyzes and interprets the results. | | | | | |
6. |
Possesses the necessary qualifications to carry out interdisciplinary work either individually or as a team member. | | | | | |
7. |
Accesses information, performs literature search, uses databases and other knowledge sources, follows developments in science and technology. | | | | | |
8. |
Performs project planning and time management, plans his/her career development. | | | | | |
9. |
Possesses an advanced level of expertise in computer hardware and software, is proficient in using information and communication technologies. | | | | | |
10. |
Is competent in oral or written communication; has advanced command of English. | | | | | |
11. |
Has an awareness of his/her professional, ethical and social responsibilities. | | | | | |
12. |
Has an awareness of the universal impacts and social consequences of engineering solutions and applications; is well-informed about modern-day problems. | | | | | |
13. |
Is innovative and inquisitive; has a high level of professional self-esteem. | | | | | |