ACADEMICS
Course Details
ELE432 - Advanced Digital Design
2024-2025 Fall term information
The course is not open this term
ELE432 - Advanced Digital Design
Program | Theoretıcal hours | Practical hours | Local credit | ECTS credit |
Undergraduate | 3 | 2 | 4 | 7 |
Obligation | : | Elective |
Prerequisite courses | : | ELE336 |
Concurrent courses | : | - |
Delivery modes | : | Face-to-Face |
Learning and teaching strategies | : | Lecture, Question and Answer, Problem Solving, Project Design/Management |
Course objective | : | It is a course designed for students who would like to reach to a higher point in digital circuit design. It includes reminders about the hardware description languages. Following this, the course has teachings in FPGA design. Synthesis is explained from the point of view of design perspective to produce more correct results in terms of digital design. Testing is also explained which is very important in providing robustness. IP blocks are also thought for the sake of fast generation of projects. Some of the topics thought are implemented in the FPGA?s. |
Learning outcomes | : | A student who completes the course successfully will be able to design a synthesizable code for digital design starting with the basics on hardware description language. Learns the main principles of digital design including IP usage, test circuit generation, benchmark creation and complete tasks in FPGA?s. |
Course content | : | Overview of Combinational Logic and Sequential Logic Advanced Hardware Description Languages (VHDL, Verilog etc.) Design for Synthesis Finite State Machines Guidelines for Advanced Digital Design Design for Test (DFT) Perform synthesis, place and route of a digital design into a target programmable gate array. Embedding and using a programmable microcontroller in a programmable gate array Using Intellectual Property (IP) blocks |
References | : | Navabi, Zinalabedin. VHDL: Analysis and Modeling of Digital Systems, McGraw Hill. ; VHDL Design: Representation and Synthesis, by J. Armstrong and F. G. Gray, 2000 ; Roth C, John L, Digital System Design using VHDL, Nelson Eng., Advanced FPGA design, IEEE |
Weeks | Topics |
---|---|
1 | Overview of Combinational Logic and Sequential Logic |
2 | Advanced Hardware Description Languages (VHDL, Verilog etc.) |
3 | Design for Synthesis |
4 | Finite State Machines |
5 | Guidelines for Advanced Digital Design |
6 | Design for Test (DFT) |
7 | Perform synthesis, place and route of a digital design into a target programmable gate array. |
8 | Embedding and using a programmable microcontroller in a programmable gate array |
9 | Using Intellectual Property (IP) blocks |
10 | Serial I/O applications |
11 | Advanced FPGA applications |
12 | Project presentations |
13 | Project presentations |
14 | Project presentations |
15 | Preparation for Final exam |
16 | Final exam |
Course activities | Number | Percentage |
---|---|---|
Attendance | 0 | 0 |
Laboratory | 0 | 0 |
Application | 0 | 0 |
Field activities | 0 | 0 |
Specific practical training | 0 | 0 |
Assignments | 1 | 30 |
Presentation | 0 | 0 |
Project | 1 | 30 |
Seminar | 0 | 0 |
Quiz | 0 | 0 |
Midterms | 0 | 0 |
Final exam | 1 | 40 |
Total | 100 | |
Percentage of semester activities contributing grade success | 60 | |
Percentage of final exam contributing grade success | 40 | |
Total | 100 |
Course activities | Number | Duration (hours) | Total workload |
---|---|---|---|
Course Duration | 14 | 3 | 42 |
Laboratory | 14 | 2 | 28 |
Application | 0 | 0 | 0 |
Specific practical training | 0 | 0 | 0 |
Field activities | 0 | 0 | 0 |
Study Hours Out of Class (Preliminary work, reinforcement, etc.) | 14 | 3 | 42 |
Presentation / Seminar Preparation | 0 | 0 | 0 |
Project | 1 | 25 | 25 |
Homework assignment | 8 | 6 | 48 |
Quiz | 0 | 0 | 0 |
Midterms (Study Duration) | 0 | 0 | 0 |
Final Exam (Study duration) | 1 | 25 | 25 |
Total workload | 52 | 64 | 210 |
Key learning outcomes | Contribution level | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1. | Possesses the theoretical and practical knowledge required in Electrical and Electronics Engineering discipline. | |||||
2. | Utilizes his/her theoretical and practical knowledge in the fields of mathematics, science and electrical and electronics engineering towards finding engineering solutions. | |||||
3. | Determines and defines a problem in electrical and electronics engineering, then models and solves it by applying the appropriate analytical or numerical methods. | |||||
4. | Designs a system under realistic constraints using modern methods and tools. | |||||
5. | Designs and performs an experiment, analyzes and interprets the results. | |||||
6. | Possesses the necessary qualifications to carry out interdisciplinary work either individually or as a team member. | |||||
7. | Accesses information, performs literature search, uses databases and other knowledge sources, follows developments in science and technology. | |||||
8. | Performs project planning and time management, plans his/her career development. | |||||
9. | Possesses an advanced level of expertise in computer hardware and software, is proficient in using information and communication technologies. | |||||
10. | Is competent in oral or written communication; has advanced command of English. | |||||
11. | Has an awareness of his/her professional, ethical and social responsibilities. | |||||
12. | Has an awareness of the universal impacts and social consequences of engineering solutions and applications; is well-informed about modern-day problems. | |||||
13. | Is innovative and inquisitive; has a high level of professional self-esteem. |
1: Lowest, 2: Low, 3: Average, 4: High, 5: Highest